攻击软件开发,软件攻击方式

作者:hacker 分类:网站入侵 时间:2023-03-11 07:30:32 浏览:153

内容导读:导航目录:1、我们是软件开发公司,对方公司服务器被病毒攻击与我们有关吗2、请问甚麽是DoS攻击,如何实现DoS攻击(希望讲简单一点)谢谢了?3、DDOS攻击流量攻击DDOS软件怎么弄?4、如何攻破软件5、软件开...……

导航目录:

我们是软件开发公司,对方公司服务器被病毒攻击与我们有关吗

不一定。

要看他们的服务器是否与你们这边有联系,可以去查一下,每一款软件都有不同用处,有的可能是相连的。

既然是软件公司那么就会很容易查到的。

请问甚麽是DoS攻击,如何实现DoS攻击(希望讲简单一点)谢谢了?

DoS(Denial of Service)拒绝服务攻击广义上可以指任何导致你的服务器不能正常提供服务的攻击。这种攻击可能就是泼到你服务器上的一杯水,或者网线被拔下,或者 *** 的交通堵塞等等,最终的结果是正常用户不能使用他所需要的服务了,不论本地或者是远程。我们这里比较关心远程的,通过 *** 进行的DoS攻击。

*** 应用的普及使我们的工作生活越来越离不开 *** 。CRM、ERP、办公自动化软件极大的提高了我们工作的效率;通过 *** 可以找到各种工作、学习资料;我们上网交 *** 费,查看银行帐户;我们上网交友娱乐。DoS攻击直接的后果可能就是你不能访问这些服务了,对某个DNS服务器或者路由器、防火墙的攻击甚至导致对整个 *** 的拒绝服务。下面,就来看看这种攻击方式如何远程达到DoS的目的。

具体DoS攻击 *** 很多,但大多都可以分为以下几类:

利用软件实现的缺陷

OOB攻击(常用工具winnuke),teardrop攻击(常用工具teardrop.c boink.c bonk.c),land攻击,IGMP碎片包攻击,jolt攻击,Cisco 2600路由器IOS version 12.0(10)远程拒绝服务攻击等等,这些攻击都是利用了被攻击软件的实现上的缺陷完成DoS攻击的。通常这些攻击工具向被攻击系统发送特定类型的一个或多个报文,这些攻击通常都是致命的,一般都是一击致死,而且很多攻击是可以伪造源地址的,所以即使通过IDS或者别的sniffer软件记录到攻击报文也不能找到谁发动的攻击,而且此类型的攻击多是特定类型的几个报文,非常短暂的少量的报文,如果伪造源IP地址的话,使追查工作几乎是不可能。

那么如何造成这些攻击的?通常是软件开发过程中对某种特定类型的报文、或请求没有处理,导致软件遇到这种类型的报文运行出现异常,导致软件崩溃甚至系统崩溃。下面结合几个具体实例解释一下这种攻击的成因。

1997年5月7号有人发布了一个winnuke.c。首先建立一条到Win95/NT主机的TCP连接,然后发送TCP紧急数据,导致对端系统崩溃。139/TCP是Win95/NT系统最常见的侦听端口,所以winnuke.c使用了该端口。之所以称呼这种攻击为OOB攻击,因为MSG_OOB标志,实际应该是TCP紧急数据攻击。

原始teardrop.c只构造了两种碎片包,每次同时发送这两种UDP碎片包。如果指定发送次数,将完全重复先前所发送出去的两种碎片包。它可以伪造源ip并跨越路由器进行远程攻击,影响的系统包括Linux/WinNT/Win95。使用的 *** 是:

teardrop 源ip 目的ip [-s 源端口] [-d 目的端口] [-n 次数]

比较新的一个DoS攻击是Windows的 *** B实现中的DoS攻击,2002年8月发布,只要允许匿名连接的windows系统就可以进行远程攻击,强烈建议Windows用户打相应的补丁。它的 *** 就是先和目标系统建立一个连接,然后发送一个特定的请求,目标系统就会兰屏。发布的测试工具 *** Bdie.exe是图形界面工具,输入目标地址NETBIOS名称即可。

从上面的讨论可以看出,这种攻击行为威力很大,而且难于侦察。但真实情况下它的危害仅现于漏洞发布后的不长的时间段内,相关厂商会很快发布补丁修补这种漏洞。所以上面提到的几种较老的攻击在现实的环境中,通常是无效的。不过最新的攻击 *** 还是让我们不寒而栗,我们可以做的就是关注安全漏洞的发布,及时打上新的补丁。如果你想偷懒的话,购买专业安全服务公司的相关服务应该是个更好的选择。

利用协议的漏洞

如果说上面那种漏洞危害的时间不是很长,那么这种攻击的生存能力却非常强。为了能够在 *** 上进行互通、互联,所有的软件实现都必须遵循既有的协议,而如果这种协议存在漏洞的话,所有遵循此协议的软件都会受到影响。

最经典的攻击是synflood攻击,它利用TCP/IP协议的漏洞完成攻击。通常一次TCP连接的建立包括3个步骤,客户端发送SYN包给服务器端,服务器分配一定的资源给这里连接并返回SYN/ACK包,并等待连接建立的最后的ACK包,最后客户端发送ACK报文,这样两者之间的连接建立起来,并可以通过连接传送数据了。而攻击的过程就是疯狂发送SYN报文,而不返回ACK报文,服务器占用过多资源,而导致系统资源占用过多,没有能力响应别的操作,或者不能响应正常的 *** 请求。

这个攻击是经典的以小搏大的攻击,自己使用少量资源占用对方大量资源。一台P4的Linux系统大约能发到30-40M的64字节的synflood报文,而一台普通的服务器20M的流量就基本没有任何响应了(包括鼠标、键盘)。而且synflood不仅可以远程进行,而且可以伪造源IP地址,给追查造成很大困难,要查找必须所有骨干 *** 运营商,一级一级路由器的向上查找。

对于伪造源IP的synflood攻击,除非攻击者和被攻击的系统之间所有的路由器的管理者都配合查找,否则很难追查。当前一些防火墙产品声称有抗DoS的能力,但通常他们能力有限,包括国外的硬件防火墙大多100M防火墙的抗synflood的能力只有20-30Mbps(64字节syn包),这里涉及到它们对小报文的转发能力,再大的流量甚至能把防火墙打死机。现在有些安全厂商认识到DoS攻击的危害,开始研发专用的抗拒绝服务产品,让我们拭目以待吧!

由于TCP/IP协议相信报文的源地址,另一种攻击方式是反射拒绝服务攻击,另外可以利用还有广播地址,和组播协议辅助反射拒绝服务攻击效果更好。不过大多数路由器都禁止广播地址和组播协议的地址。

另一类攻击方式是使用大量符合协议的正常服务请求,由于每个请求耗费很大系统资源,导致正常服务请求不能成功。如HTTP协议是无状态协议,攻击者构造大量搜索请求,这些请求耗费大量服务器资源,导致DoS。这种方式攻击比较好处理,由于是正常请求,暴露了正常的源IP地址,禁止这些IP就可以了。

进行资源比拼

这种攻击方式属于无赖打法,我凭借着手中的资源丰富,发送大量的垃圾数据侵占完你的资源,导致DoS。比如,ICMP flood,mstream flood,Connection flood。为了获得比目标系统更多资源,通常攻击者会发动DDoS(Distributed Dos 分布式拒绝服务)攻击者控制多个攻击傀儡发动攻击,这样才能产生预期的效果。前两类攻击是可以伪造IP地址的,追查也是非常困难,第3种攻击由于需要建立连接,可能会暴露攻击傀儡的IP地址,通过防火墙禁止这些IP就可以了。对于难于追查,禁止的攻击行为,我们只能期望专用的抗拒绝服务产品了。

DDOS攻击 流量攻击 DDOS软件怎么弄?

流量不是那么容易利用,这种软件可以学习开发的,计算机报文你懂多少代码

如何攻破软件

如何攻破软件 James A.Whittaker 摘要 本文讨论一系列用于发现软件设计与开发中的缺陷的 *** (所谓的“攻击”)。这些攻击 都是手工、探索性的测试方式,设计和执行都是动态的、几乎不需要额外开销。这些攻击是 经过对上百个真实的软件缺陷进行研究并且抽象出他们的成因和现象之后构造出来的。经过 佛罗里达理工学院软件测试方向的学员两个学期的细化分析,已经归纳了数十个旨在发现缺 陷的攻击策略。这些攻击策略被证明非常受用,已经发现了上百个额外的缺点——都是由这 些攻击策略直接导致的——在短时间内对产品几乎没有任何了解的情况下。本文介绍上述攻 击策略的一个子集并说明他们是如何在已发布产品中发现真实缺陷。 简介 是什么成就了一名优秀的测试人员?是什么样的天赋使他们对bug 如此敏感?这样的 能力是可以传授的吗? 这些问题就是本文的主旨。我相信优秀的测试人员更多是后天造就而不是先天生成的, 事实上,多年下来许多测试人员自己似乎积累了一个攻击策略的标准库。每当他们面临测试 难题时就会重组手头的攻击策略,从而总是能够发现缺陷。尽管这些攻击策略很少被记录下 来,它们确确实实在手工测试和测试传承中扮演着重要的角色。 通过对真实的测试人员和现实缺陷的研究,我们开始着手文档化这一财富。在本文中, 我们探索来自于该项工程的一部分成果。下一个挑战是对这些攻击施行自动化,找到有效使 用的具体策略。 攻击无异于以下三个大类:  输入/输出攻击  数据攻击  运算攻击 每个类型中都有特定类型的攻击,它们导致十分有趣的软件故障。在之后的部分我以具 体的缺陷为例介绍每个大类下的攻击类型。涉及到的bug 都来自于微软公司的产品。我认为 这不该被看作是一种反微软的行为。事实上,它作为软件行业霸主的事实使它自然而然地成 为了“众矢之的”。但不能就这样认为微软的产品相对于其他软件产商有更多的缺陷。本文 中提到的攻击策略几乎成功攻击过许多公司的软件产品,这些产品运行在你可以想到的任何 平台上。我的经验表明,不管开发人员开发的应用产品域是什么、使用的操作系统有什么差 异亦或是否发布源码,他们都在高频度地制造bugs。如果他们是web 开发人员,那就更不 用费心了,因为web 程序本身非常容易崩溃。 输入/输出攻击 针对输入/输出的攻击就是测试人员所说的“黑盒”测试,因为不需要任何有关内部数 据或计算的信息来支持测试执行。事实上,这是测试中最常见的一种,因为阅读源码不仅乏 味、费时,并且通常收益甚微,除非你知道自己到底在寻找什么类型的bug(我们将在接下 来的两部分内容里讨论什么是你应该试图寻找的)。 输入/输出攻击 单一输入攻击 迫使所有的报错信息出现 强制指定默认值 尝试所有可用的字符集 迫使输出区域大小改变 引发显示区域溢出 迫使屏幕刷新问题出现 输入值组合攻击 迫使无效输出出现 找出不能共存的输入值组合 输入序列攻击 迫使无效输出出现 多次重复同样的输入序列 单一输入攻击 这一类攻击是对使用单一输入(从变量输入的角度来说)的行为进行的检查。我们试图 发现在大部分数据都正常工作的情况下由一个单一的输入导致应用崩溃的情况。其实除了单 单从边界值上考虑以外还有很多别的方式来选择输入用例,特别是当你希望找到真正被开发 认可的bug,而不是仅仅作为未定义的需求而忽略掉。 首先给出一些看 似简单但不易施行的 建议: 确保所有的报错信息 都出现一遍。 不能使程序正常 地中止或结束的通常 就是所谓的bug。很多 报错信息仅仅是迫使程序停止来显示一条报错信息,然后接着执行下一条输入或者直到定时 器超时而已。但是,也有其他一些报错信息则是来自于被程序抛出和异常处理器被执行引发 的异常。异常处理器(或中央错误处理线程)因其指针突然改变而数据状态不产生相应变化, 通常会存在问题。异常处理器执行的瞬间,各种各样的数据问题接踵而至:文件未关闭、内 存未释放、数据未初始化。当控制重新回到主线程,很难判断错误处理器是在什么时刻被调 用,又会有怎样的遗留问题在等待粗心大意的开发人员:因为文件没有关闭导致打开文件失 败、在没有初始化前就开始使用数据。如果我们能确保在所有的报错信息都出现过之后系统 依然正常工作,那么也算是为用户省去了不少麻烦(更不用说我们的维护工程师了)。 图1 展示了我的学生在微软 Word 2000 中发现的一个有趣的bug,一条错误提示不知为 何连续出现了两次。这个bug 是在通过单一输入攻击错误处理线程的过程中发现的。 确保软件指定默认值。 开发人员通常不记得在用户输入越界或给参数设置不合理的值时指定默认的值。有时候 强制设立默认值意味着什么也不做——然而正因为想不到,这一举措甚至难倒了优秀的开发 人员。例如,在Word 2000 中,如下对话框中有一个选择框,当不对其做任何修改时再次打 开对话框,该控件将消失。对比左右图片中的对话框。你发现什么控件消失了吗? 有的时候指定默认值需要先改变值的当前设定,然后将其设定为一个不合理的值。这种 连续的转换保证了再转换成其他可用的值前是经过设置默认值。 尝试输入变量的所有可用的字符集。 有的输入问题很简单,特别是当你使用了类似$,%,#,引号等等字符时,这些字符在 许多编程语言中有特殊意义并且作为输入被读入时通常需要特殊处理。如果开发人员未考虑 这种情况,则这些输入可能导致程序的失败。 通过改变输入内容的多少引发输出区域的改变。 聚焦于输出本身是一种发现bug 颇有成效但是极少使用的 *** 。其思想是:先假定一种 表现为bug 的输出或者行为,然后寻找能够导致这种现场产生的输入。以上所述的一个简单 的攻击例子就是通过改变输入值和输入字符串的长度来引发输出区域大小的重新计算。 一个很好的概念性例子是将时钟的时间设置为9:59,然后等待它转到10:00。一开始显 示区域是4 个字符长度而后来是5。反过来,我们设定时间为12:59(5 个字符),然后等待 其转变为1:00(4 个字符)。开发人员通常只会对初始化为空白的情况进行处理而不曾考虑 到显示区域已有数据的情况下如何更新该区域以显示不同长度的数据。 举个例子,PowerPoint 中的“艺术字”功能中有个有趣的bug。假定我们输入下图中的 一个长的字符串。 可以发现因为字符串太长,并不是整个字符串都能显示出来。但这不是问题的关键。点 击确认按钮时触发两个事件。首先,程序计算出需要的输出区域大小,然后将输入的文字填 充进去。现在,我们编辑该字符串,将它改为单个字符。 可以发现尽管现在只有单个字符,字体大小也没有改变,但显示区域大小却没有发生改 变。进一步看。如果再次编辑该字符串为多行的字符串,输出结果更有意思。 我想这部分已经介绍得比较清楚了,我们将进入下一部分。 确保对显示区域的边界的检查。 这是基于输出的另一种攻击思路,与之前的十分类似。然而,不同于之前着力于导致显 示区域内部出错,这次我们将精力集中在显示区域的外部。并且显示区域将不再重新计算显 示边界而仅仅是考虑边界溢出。 再以PowerPoint 为例,我们可以先画一个文本框,然后输入一个带上标的字符串。放 大该字符串的字体使上标的上半部分被截断。这一问题将连同之后的相关问题一起说明。 引发屏幕刷新问题。 这是使用windows 图形用户界面的用户会遇到的主要问题。对开发人员来说,更是一 个大问题:过度的刷新将导致程序变慢,而不刷新又会导致大大小小的问题,小至要求用户 强制刷新,大到导致用户的操作失败。 通常通过在屏幕上添加、删除和移动元素来触发页面刷新。这将导致背景重新绘制,如 果页面不能正确、及时地作出相应,那么这就是通常意义上的bug。其中,尝试变化所移动 的元素的距离是一种较好的方式,可以移动一点点,接着移动一大截,移动一两次,接着移 动很多次。 接着说回上面例子中的带上标的字符串,试着每次用鼠标拖动它移动一些距离,就会发 现令人讨厌的问题,如下图所示。 在Office 2000 中 经常出现的另一个与 屏幕刷新相关的问题 是文本的异常消失。 这一讨厌的问题在 Word 的页面边界附近 出现。 输入值组合攻击 第二类输入/输出 bug 主要针对多个共 同作用或相互影响的输入。例如,一个通过两个参数调用的API,其中一个参数的取值建立 在另一个参数取值的基础上。通常,bug 正是出在值组合上,因为代码的逻辑关系复杂。 找出不能共存的输入值的组合。 那么哪些值的组合是有问题的?这个问题目前还处于积极研究中,但是我们已经找到了 一个特别有效地 *** ,那就是先确定期望获得的输出,然后试着去找到对应的输入值的组合。 尝试产生无效的输出。 这是一种适用于测试人员对问题域十分清楚的有效攻击 *** 。例如,当你在测试一个计 算器并且清楚部分功能点的结果有限制时,试图找到超出范围的结果所对应的输入值组合是 值得的。但是,如果你不熟悉数学,那么这种努力很可能是浪费时间——你甚至可能将一个 不正确的结果当成正确的。 有时候windows 本身会给出提示,告诉你哪些输入是相互关联的。此时,测试人员可 以去测试这些值的范围,并且尝试触犯既定的关系。 输入序列攻击 软件中的输入就像一种正式的语言。单一的输入相当于组成语言的字母,输入的字符串 类似构成语言的句子。其中一些句子应该通过控件和输入区域的启用与禁用被过滤。通过尽 可能多地输入字符串、改变输入的顺序来测试这种问题。 选择导致无效输出的输入序列。 和上文描述这是一种找到问题输入组合的好 *** 一样,这同样是找出有问题的输入序列 的好 *** 。例如,当我们发现了Office 2000 中的一个导致文本消失的问题后,对PowerPoint 幻灯片中标题文本框进行攻击。如下的一组屏幕截图再现了一个特定的输入序列是如何导致 文本消失的。 有趣的是仅仅将文本框旋转180 度并不能发现这个bug。必须按照这样的操作顺序:旋 转180 度后,再旋转10 度(或者更多)。逆向执行以上操作并不能修正这一问题,每当点击 标题外部区域,该标题内容就会消失。 改变输入的顺序之所以善于发现bug 是因为很多操作自身成功执行的同时会遗留很多 问题,它们将导致之后的操作失败。对输入序列进行彻底的检查会暴露出很多这样的问题。 然而有时候,下面这种攻击表明:为了发现bug,根本不需要使用多种多样的输入序列。 多次重复同样的输入序列。 这种方式会对资源造成大规模占用,并且对存储数据空间造成压力,当然也包括发现其 他负面的遗留问题。遗憾的是,大多数应用程序并不清楚自身空间和时间的限制,而许多开 发人员倾向于假定资源总是足够可用的。 在Word 的公式编辑器中可以找到这方面的一个例子,程序本身似乎并不清楚它只能处 理10 层嵌套括号的计算。 数据攻击 数据是软件的命脉;如果你设法破坏了它,那么程序将不得不使用被破坏的数据,这之 后得到的就不是合理的结果。所以理解数据是如何、在何处建立是必要的。 从本质上讲,数据的存储是通过读取输入,然后将其存储在内部或者存储一些内部计算 的结果来实现的。因此,测试正是通过提供输入和执行计算来实现数据在应用程序中的传递。 数据攻击遵循以下简单原则。 数据攻击 变量值攻击 1.存储不正确的数据类型 2.使数据值超过允许的范围 数据单元大小攻击 3.溢出输入缓冲区 4.存储过多的值 5.存储太少的值 数据访问攻击 6.找出同一数据的不同修改方式 变量值攻击 这一类的攻击需要对内部存储的数据对象的数据类型和合法值进行检查。如果有对源码 的权限则这些信息可以轻易得到,但是,通过小小的探索性测试和对错误信息的关注也可以 确定大致的类型信息。 改变输入的数据类型来找出不匹配的类型。 在需要整数的区域输入字符(和类似的攻击)已经被证明十分有效,但随着现代编程语 言对类型检查和类型转换的处理变得容易,我们发现这样的攻击相对之前已经不再那么有 效。 使数据值超过允许的范围。 被存储的变量数据和输入的变量数据一样,这样的攻击方式同样适用。 数据单元大小攻击 第二类数据攻击旨在触发数据结构的溢出和下溢。换句话说。攻击试图打破预先设定的 数据对象的大小限制。 首先要说的就是典型的缓冲区溢出。 溢出输入缓冲区。 此处通过输入长字符串导致输入缓冲区溢出。这是黑客们偏好的攻击方式,因为有时候 应用程序在崩溃之后会继续执行进程。若一名黑客将一段可执行代码附在一个长字符串中输 入,程序很可能执行这段代码。 在Word 2000 中的一个缓冲区溢出问题就是这样一个可被利用的bug。此bug 被发现在 查找/替换功能中,如下所示。有趣的是,“查找”这一字段被合理地加以限制而“替换”没 有。 同一数据结构 存储过多的值。 复杂地数 据结构诸如数 组、矩阵和列表 在测试中不仅 仅要考虑存储 在其中的数值, 还要考虑存储 值的数目。 同一数据结构 存储过少的值。 当数据结 构允许增加和 删除信息时,通 常在做了n-1 次增加的同时穿插着或在其之后做n 次删除操作会导致攻击成功。 数据访问攻击 我的朋友Alan Jorgensen 喜欢用“右手不明左手所为”这句话来形容这一类bug。道理 很简单,但开发人员却常倒在这一类攻击下:在很多程序中通常任何任务都能通过多种途径 完成。对测试人员来说,这意味着同一个函数可以由多个入口来调用,这些入口都必须确保 该函数的初始条件得到满足。 一个极好的例子是我的学生在PowerPoint 中发现的表格数据大小相关的崩溃性bug。创 建表格时更大尺寸被限定为25×25。然而,可以创建一个25×25 的表格,然后为其添加行 和列——导致应用程序崩溃。这就是说,程序一方面不允许26×26 的表格存在而另一方面 却并不清楚这个规则的存在。 运算攻击 运算攻击 操作数攻击 使用非法操作数进行运算 找出非法操作数组合 结果攻击 使运算结果过大 使运算结果过小 功能相互作用攻击 找出共享数据不佳的功能 操作数攻击 这类攻击需要知道在一个或更多内部运算中操作数的数据类型和可用的值。如果有源码 权限则这些信息可以轻易获得。否则,测试人员必须尽更大努力去弄清楚正在进行的运算具 体是什么、使用的是什么数据类型。 触发由非法操作数引起的运算。 有时候输入或存储的数据处于合法的范围之中,但是在某些运算类型中却是非法的。被 0 除就是一个很好的例子。0 是一个合法的整数,但作为除法运算的除数却是非法的。 找出不能共存的操作数的组合。 涉及到一个以上操作数的运算不仅受制于上面的攻击,同时存在操作数冲突的可能性。 结果攻击 第二类运算攻击旨在造成存储运算结果的数据对象的溢出和下溢。 试图造成运算结果过大而存储失败。 就算是简单如y=x+1 这样的运算在数值边界上也常出问题。如果x 和y 都是2 比特的 整数并且x 的值为32768,则这一运算将失败,因为结果将会造成存储溢出。 试图造成运算结果过小而存储失败。 和上文相同,不同的是使用y=x-1 并且使x 的值为-32767。 功能相互作用攻击 文章中讨论的这最后一类攻击或许算是所有种类的鼻祖,可以用来区分测试菜鸟和专业 人员:功能的相互作用。问题没有什么新意:不同的应用程序功能共享同一数据空间。两种 功能的相互作用导致应用程序失败,不是因为对数据处理的设定不同,就是因为产生了不良 副作用。 但是哪些功能共享数据并且能够在冲突情况下实现数据转化目前还是测试领域中一个 开放的问题。目前我们正停留在不断地尝试阶段。下面这个例子足以说明情况。 这个例子给出了在Word 2000 中的同一页面上合并脚注和双列时出现的一个出人意料 的结果。问题在于:Word 从注释的引用点计算脚注的页面宽度。所以,若同一页面上存在 两条脚注,一条被处于双列位置的内容所引用,另一条则被处于单列位置的内容所引用,单 列脚注会将双列脚注挤到下一页面。同时被挤掉的还有引用点至页面底部间的文本。 下面的屏幕 截图形象地 说明了问题。 第二列的文 本 去 哪 里 了?连同脚 注一起处在 下一页。你会 任由文档像 这 样 显 示 吗?在找到解决 *** (这意味着你得花时间去整理)前你将不得不忍受这一现状。 结论 简单遍历一遍上面罗列的21种攻击策略可以覆盖应用程序的大部分功能。事实上,施行 一次成功的攻击通常意味着尝试各种可能性,走过很多死胡同。但是仅仅因为部分这一类探 索性 *** 发现不了bug并不意味着它们没有用。首先,这段时间使用应用程序帮助测试人员 熟悉程序的各种功能,从而产生新的攻击思路。其次,测试通过是好的消息!它们表明,产 品是可靠的:尤其当这组测试是上面所说的恶意攻击。如果代码可以承受这样的测试过程, 它几乎可以应对用户作出的任何操作。 另外,永远不要低估了测试时怀揣一个具体目标的作用。我见过太多测试人员把时间浪 费在毫无目的地输入或者随机地调用API试图导致软件出错。实行测试意味着制定明确的目 标——基于会出错的点——然后设计测试用例来实践该目标。这样,每个测试用例都有目的 性并且进度可以被随时控制。 最后,记住,测试应该是有趣的。攻击这一比喻正是对测试的这一特性很好的诠释并且 还为愉快的消遣时光添加了些许作料。狩猎愉快!

软件开发安全性问题都有哪些?

对于软件开发来讲风险主要后内部和外部两方面。内部主要是管理、成本预算、技术等风险,外部的话主要是市场趋势改变、用户群体以及设计趋势等,相对于内部来说外部风险难以预测和管理,因为整个外部环境是处于发展和变化中的,而软件在完成之后不敢保证能够适用于用户的需求。为了避免这种情况,在开发之前就要做好整个行业的分析工作。软件开发风险的另一个例子是用户反馈不足或完全不存在。而对于内部测试人员来说团队无论多大,都发现不了软件中所有的错误和缺陷,但对于用户反馈的信息我们无法干预,只能进行审核其真实性,而这无疑增加了整软件团队的工作量,加大了软件的时间开发成本。

接下来我们来说一下软件开发的内部风险,管理风险可能包括恶劣的工作环境,硬件可靠性不足,编程效率低下等问题。大多数情况下出现这样的风险时,大部分时间都会在整个开发的前期阶段。 其中最重要的管理风险之一是团队结构。一般新团队都有处一个磨合期。如果在长期合作过程中团队习惯于相互配合,那么新成员就需要一定的时间融入团队,无论他有多好的经验。而在某些时候这种情况能够使团队陷入不可避免的问题中。

大家都知道每个软件在开发中出现很多问题,而解决这些问题主要依靠的是技术人员的能力以及经验。而且有些问题是比较轻微的,在当时往往看不出有任何影响,但随着开发的深入就会造成非常严重的后果。因此我们要制定详细的开发执行规则,将整个开发过程透明化降低技术风险。

在开发过程中出现的问题需要时间来修复。成本预估风险主要是由软件问题所引起的。更长的开发时间就会造成更多的成本投资。比如新功能实现的数量,错误修复和测试 - 一切都需要成本投入,而且越新的功能成本也越高。或者新功能的实现可能会导致现有系统的冲突,而这又需要修复。从而出现成本风险。

安卓软件开发怎样防止病毒攻击

1、研究市场上的病毒特征:市场上有各式各样的病毒,哪怕是不一样的病毒,但是它们可能会存在共同的特征,通过研究这些病毒的特征,在设计防护墙的时候就可以对症下药。

2、加固防护墙:软件中设置防护墙是必须要的,为避免病毒的入侵,可以对防护墙进行加固,这样就能在病毒入侵的时候把其挡在门外。

3、添加病毒补丁:如果软件不行被病毒入侵,病毒补丁就会马上启动,清理病毒,因此添加病毒补丁是重要因素。

4、接入动态更新的SDK谨慎:SDK的作用比较大,因此很多软件都会接入动态SDK,因此开发者想要操作这个步骤,一定要谨慎再谨慎,防止自己的软件受到不良影响。

安卓软件开发防止病毒攻击已经是个不成文的约定,因为用户需要有更好的体验。