攻击报文构造软件,伪造报文攻击

作者:hacker 分类:网站入侵 时间:2022-07-14 12:04:28 浏览:145

内容导读:导航目录:1、SNIFFER是干嘛的?怎么用?2、检测到带选项的IP报文攻击,丢弃报文31个,攻击源:192.168.1.8等3、***攻击的一般原理和***是什么4、***报文攻击wireshark怎么...……

导航目录:

SNIFFER是干嘛的?怎么用?

Sniffer,中文可以翻译为嗅探器,是一种威胁性极大的被动攻击工具。使用这种工具,可以监视 *** 的状态、数据流动情况以及 *** 上传输的信息。当信息以明文的形式在 *** 上传输时,便可以使用 *** 监听的方式来进行攻击。将 *** 接口设置在监听模式,便可以将网上传输的源源不断的信息截获。黑客们常常用它来截获用户的口令。据说某个骨干 *** 的路由器曾经被黑客攻人,并嗅探到大量的用户口令。本文将详细介绍Sniffer的原理和应用。

一、Sniffer 原理

1. *** 技术与设备简介

在讲述Sni计er的概念之前,首先需要讲述局域网设备的一些基本概念。

数据在 *** 上是以很小的称为帧(Frame)的单位传输的,帧由几部分组成,不同的部分执行不同的功能。帧通过特定的称为 *** 驱动程序的软件进行成型,然后通过网卡发送到网线上,通过网线到达它们的目的机器,在目的机器的一端执行相反的过程。接收端机器的以太网卡捕获到这些帧,并告诉操作系统帧已到达,然后对其进行存储。就是在这个传输和接收的过程中,嗅探器会带来安全方面的问题。

每一个在局域网(LAN)上的工作站都有其硬件地址,这些地址惟一地表示了 *** 上的机器(这一点与Internet地址系统比较相似)。当用户发送一个数据包时,这些数据包就会发送到LAN上所有可用的机器。

在一般情况下, *** 上所有的机器都可以“听”到通过的流量,但对不属于自己的数据包则不予响应(换句话说,工作站A不会捕获属于工作站B的数据,而是简单地忽略这些数据)。如果某个工作站的 *** 接口处于混杂模式(关于混杂模式的概念会在后面解释),那么它就可以捕获 *** 上所有的数据包和帧。

2. *** 监听原理

Sniffer程序是一种利用以太网的特性把 *** 适配卡(NIC,一般为以太网卡)置为杂乱(promiscuous)模式状态的工具,一旦网卡设置为这种模式,它就能接收传输在 *** 上的每一个信息包。

普通的情况下,网卡只接收和自己的地址有关的信息包,即传输到本地主机的信息包。要使Sniffer能接收并处理这种方式的信息,系统需要支持BPF,Linux下需要支持SOCKET一PACKET。但一般情况下, *** 硬件和TCP/IP堆栈不支持接收或者发送与本地计算机无关的数据包,所以,为了绕过标准的TCP/IP堆栈,网卡就必须设置为我们刚开始讲的混杂模式。一般情况下,要激活这种方式,内核必须支持这种伪设备Bpfilter,而且需要root权限来运行这种程序,所以sniffer需要root身份安装,如果只是以本地用户的身份进人了系统,那么不可能唤探到root的密码,因为不能运行Sniffer。

基于Sniffer这样的模式,可以分析各种信息包并描述出 *** 的结构和使用的机器,由于它接收任何一个在同一网段上传输的数据包,所以也就存在着捕获密码、各种信息、秘密文档等一些没有加密的信息的可能性。这成为黑客们常用的扩大战果的 *** ,用来夺取其他主机的控制权

3 Snifffer的分类

Sniffer分为软件和硬件两种,软件的Sniffer有 NetXray、Packetboy、Net monitor等,其优点是物美价廉,易于学习使用,同时也易于交流;缺点是无法抓取 *** 上所有的传输,某些情况下也就无法真正了解 *** 的故障和运行情况。硬件的Sniffer通常称为协议分析仪,一般都是商业性的,价格也比较贵。

实际上本文中所讲的Sniffer指的是软件。它把包抓取下来,然后打开并查看其中的内容,可以得到密码等。Sniffer只能抓取一个物理网段内的包,就是说,你和监听的目标中间不能有路由或其他屏蔽广播包的设备,这一点很重要。所以,对一般拨号上网的用户来说,是不可能利用Sniffer来窃听到其他人的通信内容的。

4. *** 监听的目的

当一个黑客成功地攻陷了一台主机,并拿到了root权限,而且还想利用这台主机去攻击同一网段上的其他主机时,他就会在这台主机上安装Sniffer软件,对以太网设备上传送的数据包进行侦听,从而发现感兴趣的包。如果发现符合条件的包,就把它存到一个LOg文件中去。通常设置的这些条件是包含字“username”或“password”的包,这样的包里面通常有黑客感兴趣的密码之类的东西。一旦黑客截获得了某台主机的密码,他就会立刻进人这台主机。

如果Sniffer运行在路由器上或有路由功能的主机上,就能对大量的数据进行监控,因为所有进出 *** 的数据包都要经过路由器。

Sniffer属于第M层次的攻击。就是说,只有在攻击者已经进入了目标系统的情况下,才能使用Sniffer这种攻击手段,以便得到更多的信息。

Sniffer除了能得到口令或用户名外,还能得到更多的其他信息,比如一个重要的信息、在网上传送的金融信息等等。Sniffer几乎能得到任何在以太网上传送的数据包。

Sniffer是一种比较复杂的攻击手段,一般只有黑客老手才有能力使用它,而对于一个 *** 新手来说,即使在一台主机上成功地编译并运行了Sniffer,一般也不会得到什么有用的信息,因为通常 *** 上的信息流量是相当大的,如果不加选择地接收所有的包,然后从中找到所需要的信息非常困难;而且,如果长时间进行监听,还有可能把放置Sniffer的机器的硬盘撑爆。

检测到带选项的IP报文攻击, 丢弃报文31个, 攻击源:192.168.1.8等

检测到带选项的IP报文攻击, 丢弃报文31个, 攻击源:192.168.1.8等进行启用局域网ARP攻击防御功能,步骤如下:

1、首先之一步就是对于电脑ARP检测及防御的最基本的 *** ,就是通过将IP和MAC进行静态绑定来实现,特别是将网关IP和MAC进行绑定即可。

2、接着就是进行保护电脑上网信息传输的安全性,然后进行可以开启操作系统自带的防火墙功能,如图所示,在“服务”界面中,找到“Windows FireWare”服务并开启即可。

3、然后就是进行打开“安全检测工具”窗口中,勾选“启用局域网ARP攻击防御功能”项即可开启局域网ARP攻击检测功能,同时还可以勾选其它三个选项,如下图所示。

4、接着就是进行针对局域网中运行的影响网速的第三方限速软件(比如“ *** 终结者、 *** 警察”等)进行检测即可。

5、最后就是局域网中存在ARP攻击行为的主机,直接通过程序对其进行强制隔离或断网操作。然后右击对应的ARP攻击源主机,从其右键菜单中选择“断开选中主机公网连接”项即可如下图所示。

扩展资料

报文也是 *** 传输的单位,传输过程中会不断的封装成分组、包、帧来传输,封装的方式就是添加一些信息段,那些就是报文头以一定格式组织起来的数据。

比如里面有报文类型,报文版本,报文长度,报文实体等等信息。

完全与系统定义,或自定义的数据结构同义。

来几个 TCP/IP 头结构感受一下:

IP报文头部信息

typedef struct _iphdr //定义IP首部

{unsigned char h_lenver; //4位首部长度+4位IP版本号

unsigned char tos; //8位服务类型TOS

unsigned short total_len; //16位总长度(字节)

unsigned short ident; //16位标识

unsigned short frag_and_flags; //3位标志位

unsigned char ttl; //8位生存时间 TTL

unsigned char proto; //8位协议 (TCP, UDP 或其他)

unsigned short checksum; //16位IP首部校验和

unsigned int sourceIP; //32位源IP地址

unsigned int destIP; //32位目的IP地址

}IP_HEADER;

typedef struct psd_hdr //定义TCP伪首部

{unsigned long saddr; //源地址

unsigned long daddr; //目的地址

char mbz;

char ptcl; //协议类型

unsigned short tcpl; //TCP长度

}PSD_HEADER;

typedef struct _tcphdr //定义TCP首部

{USHORT th_sport; //16位源端口

USHORT th_dport; //16位目的端口

unsigned int th_seq; //32位序列号

unsigned int th_ack; //32位确认号

unsigned char th_lenres; //4位首部长度/6位保留字

unsigned char th_flag; //6位标志位

USHORT th_win; //16位窗口大小

USHORT th_sum; //16位校验和

USHORT th_urp; //16位紧急数据偏移量}TCP_HEADER;

// 这里只是数据头, 但头最能让你看清报文是啥东西

// IP_HEADER::total_len 指明了实体数据(也就是真正的消息内容)长度。

*** 攻击的一般原理和 *** 是什么

下载:

常见 *** 攻击原理

1.1 TCP SYN拒绝服务攻击

一般情况下,一个TCP连接的建立需要经过三次握手的过程,即:

1、 建立发起者向目标计算机发送一个TCP SYN报文;

2、 目标计算机收到这个SYN报文后,在内存中创建TCP连接控制块(TCB),然后向发起者回送一个TCP ACK报文,等待发起者的回应;

3、 发起者收到TCP ACK报文后,再回应一个ACK报文,这样TCP连接就建立起来了。

利用这个过程,一些恶意的攻击者可以进行所谓的TCP SYN拒绝服务攻击:

1、 攻击者向目标计算机发送一个TCP SYN报文;

2、 目标计算机收到这个报文后,建立TCP连接控制结构(TCB),并回应一个ACK,等待发起者的回应;

3、 而发起者则不向目标计算机回应ACK报文,这样导致目标计算机一致处于等待状态。

可以看出,目标计算机如果接收到大量的TCP SYN报文,而没有收到发起者的第三次ACK回应,会一直等待,处于这样尴尬状态的半连接如果很多,则会把目标计算机的资源(TCB控制结构,TCB,一般情况下是有限的)耗尽,而不能响应正常的TCP连接请求。

1.2 ICMP洪水

正常情况下,为了对 *** 进行诊断,一些诊断程序,比如PING等,会发出ICMP响应请求报文(ICMP ECHO),接收计算机接收到ICMP ECHO后,会回应一个ICMP ECHO Reply报文。而这个过程是需要CPU处理的,有的情况下还可能消耗掉大量的资源,比如处理分片的时候。这样如果攻击者向目标计算机发送大量的ICMP ECHO报文(产生ICMP洪水),则目标计算机会忙于处理这些ECHO报文,而无法继续处理其它的 *** 数据报文,这也是一种拒绝服务攻击(DOS)。

1.3 UDP洪水

原理与ICMP洪水类似,攻击者通过发送大量的UDP报文给目标计算机,导致目标计算机忙于处理这些UDP报文而无法继续处理正常的报文。

1.4 端口扫描

根据TCP协议规范,当一台计算机收到一个TCP连接建立请求报文(TCP SYN)的时候,做这样的处理:

1、 如果请求的TCP端口是开放的,则回应一个TCP ACK报文,并建立TCP连接控制结构(TCB);

2、 如果请求的TCP端口没有开放,则回应一个TCP RST(TCP头部中的RST标志设为1)报文,告诉发起计算机,该端口没有开放。

相应地,如果IP协议栈收到一个UDP报文,做如下处理:

1、 如果该报文的目标端口开放,则把该UDP报文送上层协议(UDP)处理,不回应任何报文(上层协议根据处理结果而回应的报文例外);

2、 如果该报文的目标端口没有开放,则向发起者回应一个ICMP不可达报文,告诉发起者计算机该UDP报文的端口不可达。

利用这个原理,攻击者计算机便可以通过发送合适的报文,判断目标计算机哪些TCP或UDP端口是开放的,过程如下:

1、 发出端口号从0开始依次递增的TCP SYN或UDP报文(端口号是一个16比特的数字,这样更大为65535,数量很有限);

2、 如果收到了针对这个TCP报文的RST报文,或针对这个UDP报文的ICMP不可达报文,则说明这个端口没有开放;

3、 相反,如果收到了针对这个TCP SYN报文的ACK报文,或者没有接收到任何针对该UDP报文的ICMP报文,则说明该TCP端口是开放的,UDP端口可能开放(因为有的实现中可能不回应ICMP不可达报文,即使该UDP端口没有开放)。

这样继续下去,便可以很容易的判断出目标计算机开放了哪些TCP或UDP端口,然后针对端口的具体数字,进行下一步攻击,这就是所谓的端口扫描攻击。

1.5 分片IP报文攻击

为了传送一个大的IP报文,IP协议栈需要根据链路接口的MTU对该IP报文进行分片,通过填充适当的IP头中的分片指示字段,接收计算机可以很容易的把这些IP分片报文组装起来。

目标计算机在处理这些分片报文的时候,会把先到的分片报文缓存起来,然后一直等待后续的分片报文,这个过程会消耗掉一部分内存,以及一些IP协议栈的数据结构。如果攻击者给目标计算机只发送一片分片报文,而不发送所有的分片报文,这样攻击者计算机便会一直等待(直到一个内部计时器到时),如果攻击者发送了大量的分片报文,就会消耗掉目标计算机的资源,而导致不能相应正常的IP报文,这也是一种DOS攻击。

1.6 SYN比特和FIN比特同时设置

在TCP报文的报头中,有几个标志字段:

1、 SYN:连接建立标志,TCP SYN报文就是把这个标志设置为1,来请求建立连接;

2、 ACK:回应标志,在一个TCP连接中,除了之一个报文(TCP SYN)外,所有报文都设置该字段,作为对上一个报文的相应;

3、 FIN:结束标志,当一台计算机接收到一个设置了FIN标志的TCP报文后,会拆除这个TCP连接;

4、 RST:复位标志,当IP协议栈接收到一个目标端口不存在的TCP报文的时候,会回应一个RST标志设置的报文;

5、 PSH:通知协议栈尽快把TCP数据提交给上层程序处理。

正常情况下,SYN标志(连接请求标志)和FIN标志(连接拆除标志)是不能同时出现在一个TCP报文中的。而且RFC也没有规定IP协议栈如何处理这样的畸形报文,因此,各个操作系统的协议栈在收到这样的报文后的处理方式也不同,攻击者就可以利用这个特征,通过发送SYN和FIN同时设置的报文,来判断操作系统的类型,然后针对该操作系统,进行进一步的攻击。

1.7 没有设置任何标志的TCP报文攻击

正常情况下,任何TCP报文都会设置SYN,FIN,ACK,RST,PSH五个标志中的至少一个标志,之一个TCP报文(TCP连接请求报文)设置SYN标志,后续报文都设置ACK标志。有的协议栈基于这样的假设,没有针对不设置任何标志的TCP报文的处理过程,因此,这样的协议栈如果收到了这样的报文,可能会崩溃。攻击者利用了这个特点,对目标计算机进行攻击。

1.8 设置了FIN标志却没有设置ACK标志的TCP报文攻击

正常情况下,ACK标志在除了之一个报文(SYN报文)外,所有的报文都设置,包括TCP连接拆除报文(FIN标志设置的报文)。但有的攻击者却可能向目标计算机发送设置了FIN标志却没有设置ACK标志的TCP报文,这样可能导致目标计算机崩溃。

1.9 死亡之PING

TCP/IP规范要求IP报文的长度在一定范围内(比如,0-64K),但有的攻击计算机可能向目标计算机发出大于64K长度的PING报文,导致目标计算机IP协议栈崩溃。

1.10 地址猜测攻击

跟端口扫描攻击类似,攻击者通过发送目标地址变化的大量的ICMP ECHO报文,来判断目标计算机是否存在。如果收到了对应的ECMP ECHO REP *** 报文,则说明目标计算机是存在的,便可以针对该计算机进行下一步的攻击。

1.11 泪滴攻击

对于一些大的IP包,需要对其进行分片传送,这是为了迎合链路层的MTU(更大传输单元)的要求。比如,一个4500字节的IP包,在MTU为1500的链路上传输的时候,就需要分成三个IP包。

在IP报头中有一个偏移字段和一个分片标志(MF),如果MF标志设置为1,则表面这个IP包是一个大IP包的片断,其中偏移字段指出了这个片断在整个IP包中的位置。例如,对一个4500字节的IP包进行分片(MTU为1500),则三个片断中偏移字段的值依次为:0,1500,3000。这样接收端就可以根据这些信息成功的组装该IP包。

如果一个攻击者打破这种正常情况,把偏移字段设置成不正确的值,即可能出现重合或断开的情况,就可能导致目标操作系统崩溃。比如,把上述偏移设置为0,1300,3000。这就是所谓的泪滴攻击。

1.12 带源路由选项的IP报文

为了实现一些附加功能,IP协议规范在IP报头中增加了选项字段,这个字段可以有选择的携带一些数据,以指明中间设备(路由器)或最终目标计算机对这些IP报文进行额外的处理。

源路由选项便是其中一个,从名字中就可以看出,源路由选项的目的,是指导中间设备(路由器)如何转发该数据报文的,即明确指明了报文的传输路径。比如,让一个IP报文明确的经过三台路由器R1,R2,R3,则可以在源路由选项中明确指明这三个路由器的接口地址,这样不论三台路由器上的路由表如何,这个IP报文就会依次经过R1,R2,R3。而且这些带源路由选项的IP报文在传输的过程中,其源地址不断改变,目标地址也不断改变,因此,通过合适的设置源路由选项,攻击者便可以伪造一些合法的IP地址,而蒙混进入 *** 。

1.13 带记录路由选项的IP报文

记录路由选项也是一个IP选项,携带了该选项的IP报文,每经过一台路由器,该路由器便把自己的接口地址填在选项字段里面。这样这些报文在到达目的地的时候,选项数据里面便记录了该报文经过的整个路径。

通过这样的报文可以很容易的判断该报文经过的路径,从而使攻击者可以很容易的寻找其中的攻击弱点。

1.14 未知协议字段的IP报文

在IP报文头中,有一个协议字段,这个字段指明了该IP报文承载了何种协议 ,比如,如果该字段值为1,则表明该IP报文承载了ICMP报文,如果为6,则是TCP,等等。目前情况下,已经分配的该字段的值都是小于100的,因此,一个带大于100的协议字段的IP报文,可能就是不合法的,这样的报文可能对一些计算机操作系统的协议栈进行破坏。

1.15 IP地址欺骗

一般情况下,路由器在转发报文的时候,只根据报文的目的地址查路由表,而不管报文的源地址是什么,因此,这样就 可能面临一种危险:如果一个攻击者向一台目标计算机发出一个报文,而把报文的源地址填写为第三方的一个IP地址,这样这个报文在到达目标计算机后,目标计算机便可能向毫无知觉的第三方计算机回应。这便是所谓的IP地址欺骗攻击。

比较著名的SQL Server蠕虫病毒,就是采用了这种原理。该病毒(可以理解为一个攻击者)向一台运行SQL Server解析服务的服务器发送一个解析服务的UDP报文,该报文的源地址填写为另外一台运行SQL Server解析程序(SQL Server 2000以后版本)的服务器,这样由于SQL Server 解析服务的一个漏洞,就可能使得该UDP报文在这两台服务器之间往复,最终导致服务器或 *** 瘫痪。

1.16 WinNuke攻击

NetBIOS作为一种基本的 *** 资源访问接口,广泛的应用于文件共享,打印共享,进程间通信(IPC),以及不同操作系统之间的数据交换。一般情况下,NetBIOS是运行在LLC2链路协议之上的,是一种基于组播的 *** 访问接口。为了在TCP/IP协议栈上实现NetBIOS,RFC规定了一系列交互标准,以及几个常用的TCP/UDP端口:

139:NetBIOS会话服务的TCP端口;

137:NetBIOS名字服务的UDP端口;

136:NetBIOS数据报服务的UDP端口。

WINDOWS操作系统的早期版本(WIN95/98/NT)的 *** 服务(文件共享等)都是建立在NetBIOS之上的,因此,这些操作系统都开放了139端口(最新版本的WINDOWS 2000/XP/2003等,为了兼容,也实现了NetBIOS over TCP/IP功能,开放了139端口)。

WinNuke攻击就是利用了WINDOWS操作系统的一个漏洞,向这个139端口发送一些携带TCP带外(OOB)数据报文,但这些攻击报文与正常携带OOB数据报文不同的是,其指针字段与数据的实际位置不符,即存在重合,这样WINDOWS操作系统在处理这些数据的时候,就会崩溃。

1.17 Land攻击

LAND攻击利用了TCP连接建立的三次握手过程,通过向一个目标计算机发送一个TCP SYN报文(连接建立请求报文)而完成对目标计算机的攻击。与正常的TCP SYN报文不同的是,LAND攻击报文的源IP地址和目的IP地址是相同的,都是目标计算机的IP地址。这样目标计算机接收到这个SYN报文后,就会向该报文的源地址发送一个ACK报文,并建立一个TCP连接控制结构(TCB),而该报文的源地址就是自己,因此,这个ACK报文就发给了自己。这样如果攻击者发送了足够多的SYN报文,则目标计算机的TCB可能会耗尽,最终不能正常服务。这也是一种DOS攻击。

1.18 Script/ActiveX攻击

Script是一种可执行的脚本,它一般由一些脚本语言写成,比如常见的JAVA SCRIPT,VB SCRIPT等。这些脚本在执行的时候,需要一个专门的解释器来翻译,翻译成计算机指令后,在本地计算机上运行。这种脚本的好处是,可以通过少量的程序写作,而完成大量的功能。

这种SCRIPT的一个重要应用就是嵌入在WEB页面里面,执行一些静态WEB页面标记语言(HTML)无法完成的功能,比如本地计算,数据库查询和修改,以及系统信息的提取等。这些脚本在带来方便和强大功能的同时,也为攻击者提供了方便的攻击途径。如果攻击者写一些对系统有破坏的SCRIPT,然后嵌入在WEB页面中,一旦这些页面被下载到本地,计算机便以当前用户的权限执行这些脚本,这样,当前用户所具有的任何权限,SCRIPT都可以使用,可以想象这些恶意的SCRIPT的破坏程度有多强。这就是所谓的SCRIPT攻击。

ActiveX是一种控件对象,它是建立在MICROSOFT的组件对象模型(COM)之上的,而COM则几乎是Windows操作系统的基础结构。可以简单的理解,这些控件对象是由 *** 和属性构成的, *** 即一些操作,而属性则是一些特定的数据。这种控件对象可以被应用程序加载,然后访问其中的 *** 或属性,以完成一些特定的功能。可以说,COM提供了一种二进制的兼容模型(所谓二进制兼容,指的是程序模块与调用的编译环境,甚至操作系统没有关系)。但需要注意的是,这种对象控件不能自己执行,因为它没有自己的进程空间,而只能由其它进程加载,并调用其中的 *** 和属性,这时候,这些控件便在加载进程的进程空间运行,类似与操作系统的可加载模块,比如DLL库。

ActiveX控件可以嵌入在WEB页面里面,当浏览器下载这些页面到本地后,相应地也下载了嵌入在其中的ActiveX控件,这样这些控件便可以在本地浏览器进程空间中运行(ActiveX空间没有自己的进程空间,只能由其它进程加载并调用),因此,当前用户的权限有多大,ActiveX的破坏性便有多大。如果一个恶意的攻击者编写一个含有恶意代码的ActiveX控件,然后嵌入在WEB页面中,被一个浏览用户下载后执行,其破坏作用是非常大的。这便是所谓的ActiveX攻击。

1.19 Smurf攻击

ICMP ECHO请求包用来对 *** 进行诊断,当一台计算机接收到这样一个报文后,会向报文的源地址回应一个ICMP ECHO REP *** 。一般情况下,计算机是不检查该ECHO请求的源地址的,因此,如果一个恶意的攻击者把ECHO的源地址设置为一个广播地址,这样计算机在恢复REP *** 的时候,就会以广播地址为目的地址,这样本地 *** 上所有的计算机都必须处理这些广播报文。如果攻击者发送的ECHO 请求报文足够多,产生的REP *** 广播报文就可能把整个 *** 淹没。这就是所谓的 *** urf攻击。

除了把ECHO报文的源地址设置为广播地址外,攻击者还可能把源地址设置为一个子网广播地址,这样,该子网所在的计算机就可能受影响。

1.20 虚拟终端(VTY)耗尽攻击

这是一种针对 *** 设备的攻击,比如路由器,交换机等。这些 *** 设备为了便于远程管理,一般设置了一些TELNET用户界面,即用户可以通过TELNET到该设备上,对这些设备进行管理。

一般情况下,这些设备的TELNET用户界面个数是有限制的,比如,5个或10个等。这样,如果一个攻击者同时同一台 *** 设备建立了5个或10个TELNET连接,这些设备的远程管理界面便被占尽,这样合法用户如果再对这些设备进行远程管理,则会因为TELNET连接资源被占用而失败。

1.21 路由协议攻击

*** 设备之间为了交换路由信息,常常运行一些动态的路由协议,这些路由协议可以完成诸如路由表的建立,路由信息的分发等功能。常见的路由协议有RIP,OSPF,IS-IS,BGP等。这些路由协议在方便路由信息管理和传递的同时,也存在一些缺陷,如果攻击者利用了路由协议的这些权限,对 *** 进行攻击,可能造成 *** 设备路由表紊乱(这足可以导致 *** 中断), *** 设备资源大量消耗,甚至导致 *** 设备瘫痪。

下面列举一些常见路由协议的攻击方式及原理:

1.21.1 针对RIP协议的攻击

RIP,即路由信息协议,是通过周期性(一般情况下为30S)的路由更新报文来维护路由表的,一台运行RIP路由协议的路由器,如果从一个接口上接收到了一个路由更新报文,它就会分析其中包含的路由信息,并与自己的路由表作出比较,如果该路由器认为这些路由信息比自己所掌握的要有效,它便把这些路由信息引入自己的路由表中。

这样如果一个攻击者向一台运行RIP协议的路由器发送了人为构造的带破坏性的路由更新报文,就很容易的把路由器的路由表搞紊乱,从而导致 *** 中断。

如果运行RIP路由协议的路由器启用了路由更新信息的HMAC验证,则可从很大程度上避免这种攻击。

1.21.2 针对OSPF路由协议的攻击

OSPF,即开放最短路径优先,是一种应用广泛的链路状态路由协议。该路由协议基于链路状态算法,具有收敛速度快,平稳,杜绝环路等优点,十分适合大型的计算机 *** 使用。OSPF路由协议通过建立邻接关系,来交换路由器的本地链路信息,然后形成一个整网的链路状态数据库,针对该数据库,路由器就可以很容易的计算出路由表。

可以看出,如果一个攻击者冒充一台合法路由器与 *** 中的一台路由器建立邻接关系,并向攻击路由器输入大量的链路状态广播(LSA,组成链路状态数据库的数据单元),就会引导路由器形成错误的 *** 拓扑结构,从而导致整个 *** 的路由表紊乱,导致整个 *** 瘫痪。

当前版本的WINDOWS 操作系统(WIN 2K/XP等)都实现了OSPF路由协议功能,因此一个攻击者可以很容易的利用这些操作系统自带的路由功能模块进行攻击。

跟RIP类似,如果OSPF启用了报文验证功能(HMAC验证),则可以从很大程度上避免这种攻击。

1.21.3 针对IS-IS路由协议的攻击

IS-IS路由协议,即中间系统到中间系统,是ISO提出来对ISO的CLNS *** 服务进行路由的一种协议,这种协议也是基于链路状态的,原理与OSPF类似。IS-IS路由协议经过 扩展,可以运行在IP *** 中,对IP报文进行选路。这种路由协议也是通过建立邻居关系,收集路由器本地链路状态的手段来完成链路状态数据库同步的。该协议的邻居关系建立比OSPF简单,而且也省略了OSPF特有的一些特性,使该协议简单明了,伸缩性更强。

对该协议的攻击与OSPF类似,通过一种模拟软件与运行该协议的路由器建立邻居关系,然后传颂给攻击路由器大量的链路状态数据单元(LSP),可以导致整个 *** 路由器的链路状态数据库不一致(因为整个 *** 中所有路由器的链路状态数据库都需要同步到相同的状态),从而导致路由表与实际情况不符,致使 *** 中断。

与OSPF类似,如果运行该路由协议的路由器启用了IS-IS协议单元(PDU)HMAC验证功能,则可以从很大程度上避免这种攻击。

1.22 针对设备转发表的攻击

为了合理有限的转发数据, *** 设备上一般都建立一些寄存器表项,比如MAC地址表,ARP表,路由表,快速转发表,以及一些基于更多报文头字段的表格,比如多层交换表,流项目表等。这些表结构都存储在设备本地的内存中,或者芯片的片上内存中,数量有限。如果一个攻击者通过发送合适的数据报,促使设备建立大量的此类表格,就会使设备的存储结构消耗尽,从而不能正常的转发数据或崩溃。

下面针对几种常见的表项,介绍其攻击原理:

1.22.1 针对MAC地址表的攻击

MAC地址表一般存在于以太网交换机上,以太网通过分析接收到的数据帧的目的MAC地址,来查本地的MAC地址表,然后作出合适的转发决定。

这些MAC地址表一般是通过学习获取的,交换机在接收到一个数据帧后,有一个学习的过程,该过程是这样的:

a) 提取数据帧的源MAC地址和接收到该数据帧的端口号;

查MAC地址表,看该MAC地址是否存在,以及对应的端口是否符合;

c) 如果该MAC地址在本地MAC地址表中不存在,则创建一个MAC地址表项;

d) 如果存在,但对应的出端口跟接收到该数据帧的端口不符,则更新该表;

e) 如果存在,且端口符合,则进行下一步处理。

分析这个过程可以看出,如果一个攻击者向一台交换机发送大量源MAC地址不同的数据帧,则该交换机就可能把自己本地的MAC地址表学满。一旦MAC地址表溢出,则交换机就不能继续学习正确的MAC表项,结果是可能产生大量的 *** 冗余数据,甚至可能使交换机崩溃。

而构造一些源MAC地址不同的数据帧,是非常容易的事情。

1.22.2 针对ARP表的攻击

ARP表是IP地址和MAC地址的映射关系表,任何实现了IP协议栈的设备,一般情况下都通过该表维护IP地址和MAC地址的对应关系,这是为了避免ARP解析而造成的广播数据报文对 *** 造成冲击。ARP表的建立一般情况下是通过二个途径:

1、 主动解析,如果一台计算机想与另外一台不知道MAC地址的计算机通信,则该计算机主动发ARP请求,通过ARP协议建立(前提是这两台计算机位于同一个IP子网上);

2、 被动请求,如果一台计算机接收到了一台计算机的ARP请求,则首先在本地建立请求计算机的IP地址和MAC地址的对应表。

因此,如果一个攻击者通过变换不同的IP地址和MAC地址,向同一台设备,比如三层交换机发送大量的ARP请求,则被攻击设备可能会因为ARP缓存溢出而崩溃。

针对ARP表项,还有一个可能的攻击就是误导计算机建立正确的ARP表。根据ARP协议,如果一台计算机接收到了一个ARP请求报文,在满足下列两个条件的情况下,该计算机会用ARP请求报文中的源IP地址和源MAC地址更新自己的ARP缓存:

1、 如果发起该ARP请求的IP地址在自己本地的ARP缓存中;

2、 请求的目标IP地址不是自己的。

可以举一个例子说明这个过程,假设有三台计算机A,B,C,其中B已经正确建立了A和C计算机的ARP表项。假设A是攻击者,此时,A发出一个ARP请求报文,该请求报文这样构造:

1、 源IP地址是C的IP地址,源MAC地址是A的MAC地址;

2、 请求的目标IP地址是A的IP地址。

这样计算机B在收到这个ARP请求报文后(ARP请求是广播报文, *** 上所有设备都能收到),发现B的ARP表项已经在自己的缓存中,但MAC地址与收到的请求的源MAC地址不符,于是根据ARP协议,使用ARP请求的源MAC地址(即A的MAC地址)更新自己的ARP表。

这样B的ARP混存中就存在这样的错误ARP表项:C的IP地址跟A的MAC地址对应。这样的结果是,B发给C的数据都被计算机A接收到。

1.22.3 针对流项目表的攻击

有的 *** 设备为了加快转发效率,建立了所谓的流缓存。所谓流,可以理解为一台计算机的一个进程到另外一台计算机的一个进程之间的数据流。如果表现在TCP/IP协议上,则是由(源IP地址,目的IP地址,协议号,源端口号,目的端口号)五元组共同确定的所有数据报文。

一个流缓存表一般由该五元组为索引,每当设备接收到一个IP报文后,会首先分析IP报头,把对应的五元组数据提取出来,进行一个HASH运算,然后根据运算结果查询流缓存,如果查找成功,则根据查找的结果进行处理,如果查找失败,则新建一个流缓存项,查路由表,根据路由表查询结果填完整这个流缓存,然后对数据报文进行转发(具体转发是在流项目创建前还是创建后并不重要)。

可以看出,如果一个攻击者发出大量的源IP地址或者目的IP地址变化的数据报文,就可能导致设备创建大量的流项目,因为不同的源IP地址和不同的目标IP地址对应不同的流。这样可能导致流缓存溢出

*** 报文攻击wireshark怎么分析

我这里理解你的cap包指的就是wireshark抓到的数据包,以后简称数据包。以此回答问题如下:

1、如何分析数据包这个问题要看你分析的是什么协议的包,不同的目的对应不同的分析 *** ,但是有一些是基础的,他们是通用的。

2、在用wireshark打开数据包后,默认界面一般分为上中下三部分,上面是数据包的列表 *** ,每一行代表一个交互消息。如果选中其中一条,则会在中间那一部分展开这一条的详细内容,分析主要就看这一部分。最下面的是原始消息的二进制表达法,我一般都不看,不分析,直接忽略的。

3、分析数据包先要有个基本的概念,就是OSI的7层数据模型,从低往高依次:物理层,数据链路层, *** 层,传输层,(会话层,表示层),应用层。wireshark解析过的消息也是按照这个顺序展示的。不过具体应用时,会话层和表示层基本都不用,大多数都直接过渡到应用层,有的甚至没有应用层,没有传输层, *** 层等,但是物理层和数据链路层一般都是有的。

4、MAC地址是数据链路层,也就是第二层的概念,如果要看他的信息,就需要在第二层找,也就是你上图图中间那部分,可以看到有2行,之一行是物理层信息,第二行就是数据链路层,MAC地址信息就在第二层查找,每一层都可以双击打开,查看更详细的信息。

5、IP地址是 *** 层,也就是第三层的概念,如果你的网卡根本就没获取到IP地址,那么你抓的数据包中是不可能有这些信息的。就像你图中展示的一样,根本就没有三层的信息,说明你网卡根本就没获取到IP地址,所以,不可能有IP地址信息。

6、我给你截了个相对完整的截图,如下:

先看图的上半部分,可以看到我选择的是一条DNS查询消息(灰色部分为选中的交互消息),再看该消息的详细部分,也就是图的下半部分,从图中可以看出共五条(行),分别对应OSI模型中的物理层,数据链路层(MAC地址所在层), *** 层(IP地址所在层),传输层(确定是通过UDP传输还是TCP传输),和应用层(确定应用协议,在这里应用协议是DNS协议)。

7、不知道回答是不是你想要的,如果我理解有偏差可以追问。希望以上信息对你有用。

简单的DOS攻击

DoS(Denial of Service)拒绝服务攻击广义上可以指任何导致你的服务器不能正常提供服务的攻击。这种攻击可能就是泼到你服务器上的一杯水,或者网线被拔下,或者 *** 的交通堵塞等等,最终的结果是正常用户不能使用他所需要的服务了,不论本地或者是远程。我们这里比较关心远程的,通过 *** 进行的DoS攻击。

*** 应用的普及使我们的工作生活越来越离不开 *** 。CRM、ERP、办公自动化软件极大的提高了我们工作的效率;通过 *** 可以找到各种工作、学习资料;我们上网交 *** 费,查看银行帐户;我们上网交友娱乐。DoS攻击直接的后果可能就是你不能访问这些服务了,对某个DNS服务器或者路由器、防火墙的攻击甚至导致对整个 *** 的拒绝服务。下面,就来看看这种攻击方式如何远程达到DoS的目的。

具体DoS攻击 *** 很多,但大多都可以分为以下几类:

利用软件实现的缺陷

OOB攻击(常用工具winnuke),teardrop攻击(常用工具teardrop.c boink.c bonk.c),land攻击,IGMP碎片包攻击,jolt攻击,Cisco 2600路由器IOS version 12.0(10)远程拒绝服务攻击等等,这些攻击都是利用了被攻击软件的实现上的缺陷完成DoS攻击的。通常这些攻击工具向被攻击系统发送特定类型的一个或多个报文,这些攻击通常都是致命的,一般都是一击致死,而且很多攻击是可以伪造源地址的,所以即使通过IDS或者别的sniffer软件记录到攻击报文也不能找到谁发动的攻击,而且此类型的攻击多是特定类型的几个报文,非常短暂的少量的报文,如果伪造源IP地址的话,使追查工作几乎是不可能。

那么如何造成这些攻击的?通常是软件开发过程中对某种特定类型的报文、或请求没有处理,导致软件遇到这种类型的报文运行出现异常,导致软件崩溃甚至系统崩溃。下面结合几个具体实例解释一下这种攻击的成因。

1997年5月7号有人发布了一个winnuke.c。首先建立一条到Win95/NT主机的TCP连接,然后发送TCP紧急数据,导致对端系统崩溃。139/TCP是Win95/NT系统最常见的侦听端口,所以winnuke.c使用了该端口。之所以称呼这种攻击为OOB攻击,因为MSG_OOB标志,实际应该是TCP紧急数据攻击。

原始teardrop.c只构造了两种碎片包,每次同时发送这两种UDP碎片包。如果指定发送次数,将完全重复先前所发送出去的两种碎片包。它可以伪造源ip并跨越路由器进行远程攻击,影响的系统包括Linux/WinNT/Win95。使用的 *** 是:

teardrop 源ip 目的ip [-s 源端口] [-d 目的端口] [-n 次数]

比较新的一个DoS攻击是Windows的 *** B实现中的DoS攻击,2002年8月发布,只要允许匿名连接的windows系统就可以进行远程攻击,强烈建议Windows用户打相应的补丁。它的 *** 就是先和目标系统建立一个连接,然后发送一个特定的请求,目标系统就会兰屏。发布的测试工具 *** Bdie.exe是图形界面工具,输入目标地址NETBIOS名称即可。

从上面的讨论可以看出,这种攻击行为威力很大,而且难于侦察。但真实情况下它的危害仅现于漏洞发布后的不长的时间段内,相关厂商会很快发布补丁修补这种漏洞。所以上面提到的几种较老的攻击在现实的环境中,通常是无效的。不过最新的攻击 *** 还是让我们不寒而栗,我们可以做的就是关注安全漏洞的发布,及时打上新的补丁。如果你想偷懒的话,购买专业安全服务公司的相关服务应该是个更好的选择。

利用协议的漏洞

如果说上面那种漏洞危害的时间不是很长,那么这种攻击的生存能力却非常强。为了能够在 *** 上进行互通、互联,所有的软件实现都必须遵循既有的协议,而如果这种协议存在漏洞的话,所有遵循此协议的软件都会受到影响。

最经典的攻击是synflood攻击,它利用TCP/IP协议的漏洞完成攻击。通常一次TCP连接的建立包括3个步骤,客户端发送SYN包给服务器端,服务器分配一定的资源给这里连接并返回SYN/ACK包,并等待连接建立的最后的ACK包,最后客户端发送ACK报文,这样两者之间的连接建立起来,并可以通过连接传送数据了。而攻击的过程就是疯狂发送SYN报文,而不返回ACK报文,服务器占用过多资源,而导致系统资源占用过多,没有能力响应别的操作,或者不能响应正常的 *** 请求。

这个攻击是经典的以小搏大的攻击,自己使用少量资源占用对方大量资源。一台P4的Linux系统大约能发到30-40M的64字节的synflood报文,而一台普通的服务器20M的流量就基本没有任何响应了(包括鼠标、键盘)。而且synflood不仅可以远程进行,而且可以伪造源IP地址,给追查造成很大困难,要查找必须所有骨干 *** 运营商,一级一级路由器的向上查找。

对于伪造源IP的synflood攻击,除非攻击者和被攻击的系统之间所有的路由器的管理者都配合查找,否则很难追查。当前一些防火墙产品声称有抗DoS的能力,但通常他们能力有限,包括国外的硬件防火墙大多100M防火墙的抗synflood的能力只有20-30Mbps(64字节syn包),这里涉及到它们对小报文的转发能力,再大的流量甚至能把防火墙打死机。现在有些安全厂商认识到DoS攻击的危害,开始研发专用的抗拒绝服务产品,让我们拭目以待吧!

由于TCP/IP协议相信报文的源地址,另一种攻击方式是反射拒绝服务攻击,另外可以利用还有广播地址,和组播协议辅助反射拒绝服务攻击效果更好。不过大多数路由器都禁止广播地址和组播协议的地址。

另一类攻击方式是使用大量符合协议的正常服务请求,由于每个请求耗费很大系统资源,导致正常服务请求不能成功。如HTTP协议是无状态协议,攻击者构造大量搜索请求,这些请求耗费大量服务器资源,导致DoS。这种方式攻击比较好处理,由于是正常请求,暴露了正常的源IP地址,禁止这些IP就可以了。

进行资源比拼

这种攻击方式属于无赖打法,我凭借着手中的资源丰富,发送大量的垃圾数据侵占完你的资源,导致DoS。比如,ICMP flood,mstream flood,Connection flood。为了获得比目标系统更多资源,通常攻击者会发动DDoS(Distributed Dos 分布式拒绝服务)攻击者控制多个攻击傀儡发动攻击,这样才能产生预期的效果。前两类攻击是可以伪造IP地址的,追查也是非常困难,第3种攻击由于需要建立连接,可能会暴露攻击傀儡的IP地址,通过防火墙禁止这些IP就可以了。对于难于追查,禁止的攻击行为,我们只能期望专用的抗拒绝服务产品了。